课题:一元二次方程
一、知识框架
二、目标点击 1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程。 2.能够将一元二次方程化为一般形式并确定a,b,c的值。 三、(重)难点预见 重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程。 难点:能够将一元二次方程化为一般形式并确定a,b,c的值。 四、学法指导 结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务。 五、自主探究 【开场白设计】: 一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用。什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获。 1.忆一忆 在前面我们曾经学习了什么叫做一元一次方程?一元指的是什么含义?一次呢?你能猜想什么叫做一元二次方程吗? 【学法指导】: 本节课学习一元二次方程先让学生回忆一元一次方程。学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果。 2.想一想 请同学们根据题意,只列出方程,不进行解答: (1)一个矩形的长比宽多 解:设矩形的宽为xcm,则长为 根据题意得:
(2)两个连续正整数的平方和是313,求这两个正整数。
(3)直角三角形三边的长都是整数,它的斜边长为
【预习困难预见】: (1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以致于把方程列错了。 (2)学生在解答第(3)题时,设未知数时忘记带单位。 (3)还有的同学没有注意只列方程,以致于学生列出方程后尝试着解方程,导致耽误了一些时间。 【改进措施】: 教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑。 3.议一议 请同学们将上面的方程按照以下要求进行整理: (1)使方程的右边为0(2)方程的左边按x的降幂排列。我们会得到: ① ② ③ 你能发现上面三个方程有什么共同点? _____________________叫做一元二次方程。在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面? 【学法指导】: 学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法。 4.试一试 下面方程是一元二次方程吗?为什么?
【方法提升】: 由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程. 【口诀生成】: 判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现。 5.学一学 一元二次方程都可以化为ax²+bx +c =0 (a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax²,bx ,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数。你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来. 六、基础在线 (1) x²+7x-36 =0 (2) x²+x-1 =0 (3) y²-4y =0 (4) x²-9 =0 (5) 2x² =9 七、能力升级 将下列方程化为一般形式,并分别指出它们的二次项系数,一次项系数,常数项。 (1) 3x²-x =2 (2) 7x-3 = 2x² (3) x(2x-1)-3x(x-2) =0 八、经典解析
【思路点击】: 一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项. 【温馨提示】: 在一元二次方程中,二次项必不可缺,所以a≠0,而一次项系数b和常数项c可取任意实数值. 解析: 方法一
九、快乐达标 【必做题】 (x+1)(2x+3)=5 x2+2化成一般式是________,二次项系数是_______,一次项系数是________,常数项是_______.
【分层达标题】
说明: (1)将全班同学按数学成绩分为A、B、C三个层次,其中,A层次为全班最后三分之一;B层次同学为全班中间三分之一;C层次同学为全班最优秀的三分之一。 (2)全班最后三分之一达标任务:必做题和A层次; 全班中间三分之一达标任务:必做题和B层次; 全班最优秀的三分之一达标任务:必做题和C层次。 (3)达标方法 学生独立完成,教师收取达标测评纸条进行批阅,了解学生的达标状况,及时做好因材施教和不过关同学跟踪。 十、上课流程设计 1.学生利用20分钟的时间进行预习,同学们以小对子为单位,先独立思考,后生生交流,教师指导。 2.重点展示题目: (3)议一议;(4)试一试;(7)能力升级。 3.学习小组量化评价
作者:『徐利』 来源:『杜郎口中学』
|
![]() |
![]() |
![]() |
![]() |
![]() |